Early Access Papers:

_____________________________________________________________________

 

OVERVIEW

Title: AWE-Inspiring Electrically Small Antennas

Author: Richard W. Ziolkowski


Abstract: 

Anytime-wireless-everywhere (AWE) aspirations for Internet-of-Things (IoT) applications to be enabled through current 5G and evolving 6G and beyond ecosystems necessitate the development of innovative electrically small antennas (ESAs). While a variety of ESA systems are reviewed, those realized from the near-field resonant parasitic (NFRP) antenna paradigm are emphasized. Efficiency, bandwidth and directivity issues are highlighted. Multifunctional, reconfigurable, passive and active systems that have been achieved are discussed and illustrated; their performance characteristics and advantages described. This overview finalizes by going back to the future and considers enterprising research areas of current and forward-looking interest.

 

 


VISION

Title: The Water Drop Lens: Revisiting the Past to Shape the Future

Author: Nelson J. G. Fonseca


Abstract: 

This vision paper provides a brief overview on recent developments related to a new solution of quasi-optical beamformer, referred to as the water drop lens. This parallel plate waveguide beamformer, which is a revisited geodesic lens with a shaped profile, is attracting attention for applications in the millimetre-wave range, where more conventional dielectric lenses prove to be too lossy and standard geodesic lenses are still too bulky. On-going investigations include satellite and terrestrial communication systems, radar systems and imaging systems with wideband operation at centre frequencies ranging from about 20 GHz to over 120 GHz.

 

 

  

 

 

VISION

Title: The Water Drop Lens: Revisiting the Past to Shape the Future

Authors: Laura Mercadé, Alejandro Martínez


Abstract: 

Optomechanical interaction in optical dielectric cavities can be used to generate high-purity microwave tones, giving rise to optomechanical microwave oscillators. Here, we introduce the main properties of these devices, which can be implemented in photonic integrated chips, and envisage its deployment in the mid-term in microwave photonics applications.

 

 

 

 

 

Reviews of Electromagnetics