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Abstract
In this paper we re-examine the solution of the century-old Sommerfeld problem of a vertical Hertzian dipole
radiating over planar ground, in the context of high-frequency applications, where the media losses are relatively
small. To gain more insight into the near-ground wireless propagation mechanisms, we derive the asymptotic
field of a dipole above a half-space by the modified saddle-point method carried out to the second order in the
inverse radial distance, paying particular attention to the Norton surface wave and its significance in the total
field of the dipole. We illustrate and validate the theoretical developments by numerical results involving various
transmitter-receiver configurations of interest and different lower half-space media, including seawater and urban
ground. We also briefly review the history of this problem and the most pertinent literature, addressing certain
lingering controversies and correcting some recent misconceptions.
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2École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
*Corresponding author: k-michalski@tamu.edu

Revised: 30/08/2021, Accepted: 08/03/2022, Published: 01/04/2022

1. Introduction

The electromagnetic field of an antenna above a half-space
has been the subject of many studies and several monographs
have been devoted to this topic [1–4]. This problem was first
rigorously formulated by Sommerfeld [5], who considered
a vertical, 𝑧-oriented Hertzian dipole in the planar interface
between air and ground, and obtained a rigorous solution ex-
pressed in terms of the eponymous integral along the real axis
in the complex transverse wavenumber plane. Sommerfeld
then deformed the integration path around two hyperbolic
branch cuts and the pole of the integrand, now known as
the Sommerfeld pole, and expressed the 𝑧 component of the
vector potential in the upper half-space as 𝛱 = 𝑃 +𝑄1 +𝑄2,

where he identified the pole residue term 𝑃 as a cylindrical
variant of the Zenneck [6] wave, and the branch cut integral
contribution 𝑄1, associated with the upper medium (air), as
space wave. The contribution 𝑄2 from the other branch cut
he subsequently neglected, assuming a highly lossy lower
half-space. The Zenneck wave term was intriguing, in view
of its slow 𝜌−1/2 amplitude decay, where 𝜌 is the cylindrical
radial distance along the surface. But is the Zenneck wave
a dominant component of the total surface field far from the
transmitter? To answer this question, Sommerfeld proceeded
to the far-zone approximation of 𝑄1, since this integral was
not amenable to a closed-form solution, and after a lengthy
and intricate derivation, which repeatedly invoked the high-
contrast approximation, arrived at an expression of 𝑃+𝑄1 in
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terms of the error function of a complex argument involving a
square root of a parameter called “numerical distance,” which
is essentially a product of 𝜌 and the complex “distance” of
the pole from the branch point associated with the upper half-
space. The asymptotic expansion of the error function for a
large numerical distance then yielded the Zenneck wave as
the dominant part of the surface field of the dipole, and thus it
appeared that this slowly-decaying wave, not the space wave,
was the main mechanism of near-ground radio wave propa-
gation. However, as it later turned out, this was an erroneous
conclusion, resulting from some elusive error(s) in Sommer-
feld’s derivation, which manifested itself by a wrong sign of
the square root of the numerical distance in the argument of
the error function. In conclusion of his paper, Sommerfeld
also included a brief discussion of an alternative representa-
tion of the solution as a double integral over the spectrum
of homogeneous plane waves propagating in all directions in
space, as well as inhomogeneous plane waves propagating
along the interface. The latter approach was used a decade
later by Weyl [7] as the point of departure for his asymptotic
solution. According to Weyl, the two-fold integral formulation
afforded more freedom in the application of Cauchy’s integral
theorem, but his method was rather intricate and had very
few followers. However, Weyl derived the first known correct
asymptotic solution for the surface field of a dipole, since—
as mentioned above—the Sommerfeld’s original asymptotic
analysis was flawed and led to a wrong conclusion that the
Zenneck wave was the predominant component of the field
radiated by a vertical dipole over a finitely conducting ground.
Sommerfeld later revisited this problem in a paper under the
same title [8], where he used a still different asymptotic pro-
cedure and this time obtained a correct solution, in agreement
with Weyl.

The approximations used by Sommerfeld and his follow-
ers were ingenious but mostly ad hoc and they relied on the
high-contrast assumption—which was fully justified, given
the low frequency range then of interest. The derived field
expressions were applicable in a restricted elevation range
near the interface, with the surface field expressed in terms
of the error function complement of complex argument, as
exemplified by the early work of van der Pol and Niessen [9]
and the much later contribution of Kockel [10]. The latter,
which was written to commemorate the 50th anniversary of
the Sommerfeld’s [5] original paper, may be considered an
epilogue to the early era in the history of the problem. A
major milestone in that era was the work of Norton [11], who
combined the earlier results of van der Pol [12] and Wise [13]
to arrive at a field representation applicable for all elevation
angles, and which became the de facto standard for many
years to follow.1 Perhaps the first systematic asymptotic anal-
ysis of the Sommerfeld problem was due to Ott [14], who
adapted the modified saddle-point method of Pauli [15].2 Sim-
ilar multiplicative pole treatment was subsequently developed
by Clemmow [16–18], and was later extensively employed
by Wait [19, 20]. However, the multiplicative method has

been largely superseded by the additive method of van der
Waerden [21], which was elaborated by Felsen and Marcu-
vitz [22, Ch. 4], and employed early on by Bernard and Ishi-
maru [23] and Collin [24].3 The multiplicative and additive
variants of the modified saddle-point-method were more re-
cently studied by Michalski and Lin [25], who showed them
to be theoretically equivalent. However, since the residue at
the pole of the integrand is explicit in the additive method, but
it only arises as a sum of an infinite number of terms in the
multiplicative variant, the latter is less accurate with the same
number of terms included.

Any asymptotic solution of the Sommerfeld half-space
problem comprises, at a minimum, a geometrical-optics field
of the first order in 𝑟−1, where 𝑟 is the radial distance from the
dipole to the field point, and a surface field associated with
the Sommerfeld pole, nowadays usually referred to as the Nor-
ton surface wave [26]. The geometrical-optics field, which
consists of the direct and the specularly reflected waves, may
also be legitimately called a space wave, since it vanishes at
the interface. The Norton wave comprises the so-called atten-
uation function of a complex parameter generally known as a
numerical distance in homage to Sommerfeld, which depends
on the location of the pole with respect to the wavenumber
of the upper half-space, the radius, and the elevation angle.
A remarkable feature of the attenuation function is that it
has a different asymptotic form, depending on the argument
of the numerical distance: if the argument is positive, the
asymptotic form comprises a trapped pole wave akin to the
Zenneck surface wave, which is then the dominant part of
the far-zone surface field. However, for a conventional homo-
geneous ground, the argument of the numerical distance is
always negative, and thus the Zenneck wave does not appear
in the asymptotic surface field. In the absence of the trapped
surface wave, the far-zone behavior of the surface field is 𝑟−2,
typical of a lateral wave.

Over the past decade there has been a renewed interest
in the wave propagation mechanisms over the ground or sea
surface in the context of surface wave radar, cellular wire-
less communications, near-ground sensors, and on-body net-
works [26–40].4 In these applications the canonical half-space
problem of Sommerfeld is still highly relevant, but with the
trend of increasing operating frequencies some of the assump-
tions in the earlier solutions may have to be re-examined. The
effect of the higher frequencies is to reduce the loss tangent of
the media, which decreases the material contrast between the
two half-spaces and increases the numerical distance parame-
ter. As a result, the role of the Norton surface wave tends to
be de-emphasized, but the hitherto always neglected branch
cut wave may have to be taken into account [40, 41].

The purpose of this paper is to re-examine the solution of
the Sommerfeld half-space problem in light of the recent high-
frequency applications—with references to the most pertinent
literature and addressing some of the associated controversies
and misconceptions, and finally to answer the question posed
in the title. To better understand the wireless propagation
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mechanisms over flat and smooth ground or water surface,
we derive the asymptotic field of a vertical dipole over a half-
space medium by the modified saddle-point method carried
out to the second order in the inverse radial distance, paying
special attention to the Norton surface wave and its signifi-
cance in the total field of the dipole. We illustrate and validate
the theoretical developments by numerical examples involv-
ing various transmitter-receiver configurations of interest and
different lower half-space media, including seawater and ur-
ban ground. For easy reference, we include supplementary
mathematical details in the appendices. We also provide copi-
ous notes to elucidate various aspects of the problem and its
solution.

2. Problem geometry and notation
Consider a 𝑧-oriented time-harmonic Hertzian dipole with the
current moment 𝐼ℓ [Am], located on the 𝑧 axis at a distance
ℎ above a dielectric half-space, as illustrated in Fig. 1. The

Figure 1: Vertical Hertzian dipole at a height ℎ above a
dielectric half-space.

permeability and permittivity of medium 𝑛 are denoted by
𝜇𝑛 and 𝜀𝑛, so that the corresponding intrinsic impedance and
wavenumber are 𝜂𝑛 =

√︁
𝜇𝑛/𝜀𝑛 and 𝑘𝑛 =𝜔

√
𝜇𝑛𝜀𝑛. The param-

eters of free space will be distinguished by a subscript zero,
with 𝑘0 = 2𝜋/𝜆0, where 𝜆0 is the corresponding wavelength.
We limit attention to non-magnetic media with 𝜇𝑛 = 𝜇0 and
the upper half-space medium will be taken as air, with 𝜀1 = 𝜀0,
whereas the lower half-space will be assumed lossy, with
complex-valued parameters. A lossy medium with the conduc-
tivity 𝜎 will be characterized by the complex-valued relative
permittivity 𝜀𝑟 = 𝜀′𝑟 − 𝑗𝜎/(𝜔𝜀0) = 𝜀′𝑟 (1− 𝑗 tan𝛿), where tan𝛿
is the loss tangent. The 𝑒 𝑗𝜔𝑡 time convention is implied. The
material contrast of the two half-spaces is given by the relative
dielectric constant 𝜖 = 𝜀2/𝜀1 = |𝜖 |𝑒− 𝑗 𝜙, where 𝜙 ∈ [0, 𝜋/2),
assuming non-plasmonic media [42]. The coordinates asso-
ciated with the dipole are also illustrated in Fig. 1 and are
self-explanatory. We note, in particular, that the wave spec-
ularly reflected at an angle 𝜃2, which travels the distance 𝑟2
from the dipole to the field point, may also be interpreted as
originating at the geometrical image of the source at 𝑧 = −ℎ.

3. Formal solution
To investigate the electromagnetic field in the upper half-
space due to the vertical dipole in Fig. 1, it will suffice to
consider the 𝑧 component of the electric field, 𝐸𝑧1, which
may readily be derived from the 𝑧 component of the vector
potential, 𝐴𝑧1. In Appendix A we present for easy reference
the rigorous solution for 𝐴𝑧1, as well as its approximate form
suitable for the asymptotic analysis. This solution comprises
a Sommerfeld integral along the real axis in the 𝑘𝜌−plane,
indicated as 𝐶 in Fig. 14. We transform this solution by
the substitutions 𝜌 = 𝑟2 sin𝜃2 and 𝑧 + ℎ = 𝑟2 cos𝜃2, and also
introduce a new variable of integration via

𝑘𝜌 = 𝑘1 sin𝜉 , 𝑘𝑧1 = 𝑘1 cos𝜉 (1)

so that5

𝑘𝑧2 = 𝑘1𝜅(𝜉) , 𝜅(𝜉) =
√︃
𝜖 − sin2 𝜉 (2)

and as a result we obtain

𝐸𝑧1 = − 𝑗𝜂1𝑘
2
1
𝐼ℓ

4𝜋
E (3)

where E is the normalized field given as

E = E𝐷 +E𝑆 (4)

in which

E𝐷 =

[
sin2 𝜃1 −

(
1−3cos2 𝜃1

) ( 𝑗

Ω1
+ 1
Ω2

1

)]
𝑒− 𝑗Ω1

Ω1
(5)

with Ω1 = 𝑘1𝑟1 is the direct (whole-space) field of the dipole
and

E𝑆 =
1

√
𝜋Ω2

∫
𝐶

Γ(𝜉) 𝑓 (𝜉) 𝑒Ω2𝑞 ( 𝜉 )𝑑𝜉 (6)

with Ω2 = 𝑘1𝑟2 is the scattered field, which accounts for the
presence of the dielectric boundary. The integrand terms in
(6) are defined as

Γ(𝜉) = cos𝜉 −Δ(𝜉)
cos𝜉 +Δ(𝜉) , Δ(𝜉) = 𝜅(𝜉)

𝜖
(7)

𝑓 (𝜉) = sin2 𝜉√︁
2 𝑗

√︄
sin𝜉
sin𝜃2

𝜛(𝜉) (8)

𝜛(𝜉) = 1+ 𝑗

8Ω2 sin𝜃2 sin𝜉
(9)

𝑞(𝜉) = − 𝑗 cos(𝜉 − 𝜃2) (10)

where Γ(𝜉) is the reflection coefficient for parallel-polarized
(transverse-magnetic) waves. The integration path 𝐶 is illus-
trated in Fig. 2, showing the top Riemann sheet of the 𝜉-plane,
which is the image of sheets 𝐼 and 𝐼 𝐼 from the 𝑘𝜌-plane in
the mapping (1). The Roman numerals refer to the mapped
sheets and their subscripts to the quadrants, with the quadrant
boundaries marked by dotted lines. The transformation (1)
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(𝑎)

(𝑏)

Figure 2: Top Riemann sheet of the 𝜉-plane for (𝑎) 𝜃2 < 𝜃𝑐𝑏
and (𝑏) 𝜃2 > 𝜃𝑐𝑏, assuming that 𝜖 = 4− 𝑗0.2 for illustration
purposes.

removes the branch cuts associated with 𝑘𝑧1, but those associ-
ated with 𝑘𝑧2 persist and are indicated by the solid blue lines.
The condition ℑ𝑚 𝑘𝑧2 < 0 holds everywhere on this sheet,
with the exception of the branch cuts, where ℑ𝑚 𝑘𝑧2 = 0. We
also indicate by the green cross the branch point 𝜉𝑏, which is
the image of 𝑘2 from Sheet 𝐼 and satisfies

sin𝜉𝑏 =
√
𝜖 , cos𝜉𝑏 = − 𝑗

√
𝜖 −1 (11)

from which we obtain

𝜉𝑏 = 𝜋/2+ 𝑗 ln
(√

𝜖 +
√
𝜖 −1

)
(12)

and by the red cross we indicate the pole 𝜉𝑝 of the reflection
coefficient Γ(𝜉), which is the image of the Sommerfeld pole
𝑘 𝑝 from Sheet 𝐼 and satisfies

sin𝜉𝑝 =

√︂
𝜖

𝜖 +1
, cos𝜉𝑝 = − 1

√
𝜖 +1

(13)

from which we obtain

𝜉𝑝 = 𝜋/2+ 𝑗 ln
(√︂

𝜖

𝜖 +1
− 𝑗
√
𝜖 +1

)
. (14)

The meaning of the other paths shown in this figure will be
explained in due course. Note that we do not show the bottom
sheet of the 𝜉-plane, which is the image of sheets 𝐼 𝐼 𝐼 and
𝐼𝑉 from the 𝑘𝜌-plane and lies directly beneath the top sheet
illustrated in Fig. 2.

4. Asymptotic analysis
4.1. Saddle point contribution
Preparatory to the application of the saddle-point integration
method, we next deform the original path 𝐶 in (6) into the
steepest-descent path passing through the saddle point 𝜉𝑠 , and
will denote the resulting contribution to the scattered field by
ESDP
𝑆

. The saddle point is given as the root of 𝑞′ (𝜉) = 0, where
the prime denotes a derivative, and in view of (10) we find
that 𝜉𝑠 = 𝜃2. The steepest-descent path (SDP) is defined by
the conditions ℑ𝑚𝑞(𝜉) =ℑ𝑚𝑞(𝜉𝑠) and ℜ𝑒 𝑞(𝜉) ≤ ℜ𝑒 𝑞(𝜉𝑠),
or in our case

ℜ𝑒 cos(𝜉 − 𝜃2) = cos(𝜉′ − 𝜃2) cosh𝜉′′ = 1 (15)
ℑ𝑚 cos(𝜉 − 𝜃2) = −sin(𝜉′ − 𝜃2) sinh𝜉′′ ≤ 0 (16)

where the notation 𝜉 = 𝜉′ + 𝑗𝜉′′ is implied, from which we
obtain

𝜉′ = 𝜃2 ± arccossech𝜉′′ , −∞ < 𝜉′′ <∞ (17)

where the upper (lower) sign should be selected in the positive
(negative) range of 𝜉′′, so that the SDP is asymptotic to the
vertical lines 𝜉′ = 𝜃2 ± 𝜋/2. This path is denoted as 𝐶SDP and
indicated by a red continuous line in Fig. 2. We note that,
in view of (17), the SDP passes through the saddle point 𝜃2
at an angle of 𝜋/4 with the real axis, and that it shifts to the
right as 𝜃2 increases toward 𝜋/2. The limiting SDP passing
through 𝜃2 = 𝜋/2 is thus given as sin𝜉′ cosh𝜉′′ = 1, and since
ℜ𝑒 𝑘𝜌/𝑘1 = ℜ𝑒 sin𝜉 = sin𝜉′ cosh𝜉′′, it is also a boundary
of the fast wave region [43, Sec. 19.5]. The fast wave pole
𝜉𝑝, located below this boundary in the 𝐼4 quadrant of the
top sheet of the 𝜉 plane, as illustrated in Fig. 2, will thus
never be captured when 𝐶 is deformed into 𝐶SDP, although it
may still indirectly affect the SDP integral, especially in the
high-contrast case, when 𝜉𝑠 may be close to 𝜉𝑝 for elevation
angles near the interface. The branch point 𝜉𝑏, however, can
definitely be captured by the SDP, which will occur when 𝜃2
exceeds a certain angle 𝜃𝑐𝑏 given as

𝜃𝑐𝑏 = 𝜉′𝑏 − arccossech𝜉′′𝑏 (18)

which in the lossless case reduces to 𝜃𝑐𝑏 = arcsin
(
1/
√
𝜖
)
.

The SDP location for 𝜃2 < 𝜃𝑐𝑏 and 𝜃2 > 𝜃𝑐𝑏 is illustrated
in Fig. 2 (𝑎) and (𝑏), respectively. Note that in the latter
case 𝐶SDP passes through the branch cuts and approaches the
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vertical asymptote 𝜉′ = 𝜃2 + 𝜋/2 on the bottom sheet, hence
the SDP integral should be augmented by an integral around
the branch cut 𝐶𝑏, so that 𝐶SDP and the original path 𝐶 may
be reconnected on the top sheet at infinity [2, Sec. 30.1]. The
parts of the SDP on the bottom sheet are distinguished by a
broken line.

To facilitate the asymptotic evaluation of ESDP
𝑆

, we first
change the variable of integration in (6) via the transformation

cos(𝜉 − 𝜃2) = 1− 𝑗 𝑠2 , −∞ < 𝑠 <∞ (19)

or equivalently

𝑠2 = − 𝑗 [1− cos(𝜉 − 𝜃2)] = −2 𝑗 sin2
(
𝜉 − 𝜃2

2

)
(20)

with the Jacobian

𝑑𝜉

𝑑𝑠
=

√︁
2 𝑗√︁

1− 𝑗 𝑠2/2
(21)

and upon solving (19) for 𝜉 subject to (21) we obtain

𝜉SDP = 𝜃2 + 𝑗 ln
[ (

1− 𝑗 𝑠2) + (1− 𝑗)𝑠
√︃

1− 𝑗 𝑠2/2
]
. (22)

The SDP is thus transformed into the real axis in the complex
𝑠 plane, with the saddle point at the origin, and ESDP

𝑆
takes

the form

ESDP
𝑆 =

𝑒− 𝑗Ω2

√
𝜋Ω2

∫ ∞

−∞
𝐺 (𝑠) 𝑒−Ω2𝑠

2
𝑑𝑠 (23)

where

𝐺 (𝑠) = 𝑑𝜉

𝑑𝑠
Γ(𝜉) 𝑓 (𝜉)

���
𝜉=𝜉SDP

. (24)

The integral in (23) is for large Ω2 amenable to the modified
saddle-point integration method, which takes onto account
the influence of the Sommerfeld pole, as summarized for
easy reference in Appendix B. Upon applying this method we
obtain the approximation

ESDP
𝑆 ≈ E (1)

𝑅
+E (2)

𝑅
+E (2)

𝑁
(25)

where the first two terms are the first- and second-order re-
flected fields given as

E (1)
𝑅

= sin2 𝜃2 Γ(𝜃2)
𝑒− 𝑗Ω2

Ω2
(26)

and

E (2)
𝑅

= − 𝑗
[
(1−3cos2 𝜃2)Γ(𝜃2) − sin2 𝜃2Υ(𝜃2)

] 𝑒− 𝑗Ω2

Ω2
2

(27)

where

Υ(𝜃2) =
5
2

cot𝜃2 Γ
′ (𝜃2) +

1
2
Γ′′ (𝜃2) (28)

with the derivatives of the reflection coefficient given as

Γ′ (𝜉) = − 2(𝜖 −1)
𝜖 𝜅(𝜉) 𝛿2 (𝜉)

sin𝜉 (29)

Γ′′ (𝜉) = Γ′ (𝜉)
{
𝜖 cot𝜉
𝜅2 (𝜉)

+2
sin𝜉
𝛿(𝜉)

[
1+ cos𝜉

𝜖 𝜅(𝜉)

]}
(30)

where 𝛿(𝜉) = cos𝜉 + 𝜅(𝜉)/𝜖 is the denominator of Γ(𝜉).
The third term in (25), which may be considered a second-

order Norton surface wave, is given as

E (2)
𝑁

=
𝑟𝑝

𝑠𝑝
F (𝑝) 𝑒

− 𝑗Ω2

Ω2
(31)

where we have introduced the function [25]

F (𝑝) ≡ 𝐹 (𝑝) + 1
2𝑝

(32)

which modifies the Sommerfeld-Norton attenuation factor
𝐹 (𝑝) defined in Appendix B. For convenience, where there
is no danger of confusion, we will refer to the modified at-
tenuation function (32) as simply the attenuation function,
and to the second-order Norton surface wave (31) as simply
the Norton wave. The parameter 𝑝 is the numerical distance
introduced in (70), which takes the form 𝑝 = Ω2𝑠

2
𝑝 , where we

recall that 𝑠𝑝 is the pole of 𝐺 (𝑠). Since this pole is an image
of 𝜉𝑝 under the transformation (20), we find

𝑠2
𝑝 = − 𝑗

[
1− cos(𝜉𝑝 − 𝜃2)

]
= − 𝑗

[
1− sin𝜉𝑝 sin𝜃2 − cos𝜉𝑝 cos𝜃2

] (33)

and upon invoking (13) we obtain

𝑝 = − 𝑗Ω2

(
1−

√︂
𝜖

𝜖 +1
sin𝜃2 +

cos𝜃2√
𝜖 +1

)
. (34)

Finally, 𝑟𝑝 is the residue of 𝐺 (𝑠) at 𝑠𝑝, which is identical to
the residue of Γ(𝜉) 𝑓 (𝜉) at 𝜉𝑝 , and since 𝑓 (𝜉) is regular at 𝜉𝑝 ,
we obtain

𝑟𝑝 =
2𝜖
√
𝜖

𝜖2 −1
𝑓 (𝜉𝑝) = sin2 𝜃2 𝑟

′
𝑝 (35)

where

𝑟 ′𝑝 =
√︁
−2 𝑗

𝜖
√
𝜖

𝜖2 −1

( sin𝜉𝑝
sin𝜃2

)5/2
𝜛(𝜉𝑝) . (36)

It should be noted here that 𝜛(𝜉𝑝) comprises an additive term
with Ω−1

2 dependence, which contributes to the higher-order
terms in the Norton wave, but its effect is negligible when
Ω2 ≫ 1.

The numerical distance 𝑝 plays an important role in the
asymptotic field representation, as discussed in Appendix C,
where we also illustrate the dependence of 𝑝 on 𝜃2 and the
media parameters. The second-order Norton wave E (2)

𝑁
is

related to the original Norton [11] surface wave, which ap-
pears as (80) in Appendix D. In Appendix E we show that
for conventional lower half-space media the Zenneck wave
does not appear in the asymptotic form of E (2)

𝑁
. Furthermore,

in Appendix F we demonstrate that the Norton wave may be
omitted in (25) when |𝑝 | ⪆ 10.
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4.2. Branch cut contribution
We next turn attention to the branch cut integral, which has
to be added to the SDP integral when 𝜃2 exceeds 𝜃𝑐𝑏, as
illustrated in Fig. 2(𝑏). Note that on the path around the
branch cut𝐶𝑏, the condition ℜ𝑒 𝑘𝑧2 > 0 holds on the right side
of 𝐶𝑏 and the condition ℜ𝑒 𝑘𝑧2 < 0 on the left side, as may
be inferred from the properties of 𝑘𝑧𝑛 illustrated in Fig. 12.
We will subsequently deform 𝐶𝑏 to the steepest-descent path
𝐶BCP emanating from the branch point 𝜉𝑏, which is indicated
by a green dash-dot line in Fig. 2(𝑏). Such a deformation is
permissible as there are no singularities in the region of the
complex plane swept in this process [44]. It follows from the
condition ℑ𝑚𝑞(𝜉) = ℑ𝑚𝑞(𝜉𝑏) that this new BCP is given as

𝜉′ = 𝜃2 + arccos
[
cos(𝜉′𝑏 − 𝜃2) cosh𝜉′′𝑏 sech𝜉′′

]
(37)

with 𝜉′′
𝑏
≤ 𝜉′′ <∞, and we note that it approaches the vertical

asymptote 𝜉′ = 𝜃2 + 𝜋/2 for 𝜉′′ → ∞. The contribution to
E𝑆 from the integral around the deformed branch cut path is
found as

E𝐵 =
1

√
𝜋Ω2

∫
𝐶BCP

⟦Γ(𝜉)⟧ 𝑓 (𝜉) 𝑒Ω2𝑞 ( 𝜉 )𝑑𝜉 , 𝜃2 > 𝜃𝑐𝑏 (38)

where

⟦Γ(𝜉)⟧ =
4cos𝜉 𝜅(𝜉)/𝜖

cos2 𝜉 − 𝜅2 (𝜉)/𝜖2 , ℜ𝑒 𝜅(𝜉) > 0 (39)

represents the jump in Γ(𝜉) between the top and bottom sheets
along the integration path.

To facilitate the asymptotic evaluation of E𝐵, we introduce
in (38) a new variable of integration via the substitution

cos(𝜉 − 𝜃2) = cos(𝜉𝑏 − 𝜃2) − 𝑗 𝑠2 ≡ 𝜁 (𝑠) , 0 ≤ 𝑠 <∞ (40)

with the Jacobian

𝑑𝜉

𝑑𝑠
=

2 𝑗 𝑠√︁
1− 𝜁2 (𝑠)

(41)

and upon solving (40) for 𝜉 we find

𝜉BCP = 𝜃2 + 𝑗 ln
[
𝜁 (𝑠) − 𝑗

√︃
1− 𝜁2 (𝑠)

]
. (42)

After this transformation E𝐵 takes the form

E𝐵 =
𝑒− 𝑗Ω2 cos( 𝜉𝑏−𝜃2 )

√
𝜋Ω2

∫ ∞

0
𝐵(𝑠) 𝑒−Ω2𝑠

2
𝑠 𝑑𝑠 , 𝜃2 > 𝜃𝑐𝑏

(43)
where

𝐵(𝑠) = 2 𝑗√︁
1− 𝜁2 (𝑠)

⟦Γ(𝜉)⟧ 𝑓 (𝜉)
���
𝜉=𝜉BCP

. (44)

We next approximate 𝐵(𝑠) in (43) by the two-term Maclaurin
expansion

𝐵(𝑠) ≈ 𝐵(0) +𝐵′ (0)𝑠 (45)

where we note that 𝐵(0) = 0, since 𝑠 = 0 corresponds to 𝜉 = 𝜉𝑏
and ⟦Γ(𝜉𝑏)⟧ = 0, and consequently the coefficient 𝐵′ (0) may
be found as

𝐵′ (0) = lim
𝑠→0

𝐵(𝑠)
𝑠

=
4
√︁

2 𝑗Λ
cos𝜉𝑏 sin(𝜉𝑏 − 𝜃2)

√︄
sin𝜉𝑏
sin𝜃2

≡Φ(𝜃2)

(46)
where

Λ = lim
𝑠→0

𝜅(𝜉)
𝑠

H
=

√︄
−2 𝑗 sin𝜉𝑏 cos𝜉𝑏

sin(𝜉𝑏 − 𝜃2)
. (47)

After this approximation, the integral in (43) may be evaluated
in a closed form, which yields

E (2)
𝐵

≈ Φ(𝜃2)
4Ω2

2
𝑒−𝑘1

√
𝜖 −1(ℎ+𝑧) 𝑒− 𝑗𝑘1

√
𝜖 𝜌 (48)

where in the exponent we have invoked (11). The branch
cut contribution is thus a second-order effect with Ω−2

2 range
dependence, which we emphasize by the superscript (2) added
in (48). This wave propagates along the interface with the
phase velocity corresponding to the medium of the lower half-
space, but it also decreases exponentially with the distance if
the medium is lossy. Furthermore, its amplitude has a strong
exponential decay in the direction normal to the interface with
a rate proportional to (ℎ+ 𝑧)/𝜆0.

4.3. Complete asymptotic field
If we denote by E (1)

𝐷
and E (2)

𝐷
the first- and second-order com-

ponents of the direct field (5), we may express the complete
asymptotic field of the dipole as

E ≈ E𝐺𝑂 +E𝐿 +U
(
𝜃2 − 𝜃𝑐𝑏

)
E (2)
𝐵

+E (2)
𝑁

(49)

where we have introduced the geometrical-optics field

E𝐺𝑂 ≡ E (1)
𝐷

+E (1)
𝑅

= sin2 𝜃1
𝑒− 𝑗Ω1

Ω1
+ sin2 𝜃2 Γ(𝜃2)

𝑒− 𝑗Ω2

Ω2

(50)

which comprises the first-order direct (line-of-sight) field of
the dipole and a wave specularly reflected from the half-space
medium below, and the lateral wave6

E𝐿 ≡ E (2)
𝐷

+E (2)
𝑅

(51)

which comprises the second-order direct and reflected waves.
Since E𝐺𝑂 = 0 in the on-surface configuration, where 𝜃1 =
𝜃2 = 𝜋/2, 𝑟1 = 𝑟2 = 𝜌 and Γ(𝜃2) = −1, we may also call it the
space wave [45], and the remaining field components in (49)
may be referred to as the ground wave [38]. In the on-surface
configuration this ground wave simplifies to

E ≈ −2 𝑗
𝜖2

𝜖 −1

[
𝑒− 𝑗𝑘1𝜌

(𝑘1𝜌)2 −
1

𝜖
√
𝜖

𝑒− 𝑗
√
𝜖 𝑘1𝜌

(𝑘1𝜌)2

]
+E (2)

𝑁
(52)

where the first and second terms in the brackets arise from
the lateral and branch cut waves, respectively. The latter is
always present when 𝜃2 = 𝜋/2, but is subject to exponential
decay in the presence of losses.
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5. Numerical results and discussion
We now present sample numerical results that confirm and
amplify the theoretical developments of this paper. For il-
lustration purposes we will use three representative lower
half-space media, viz., seawater, rich soil, and poor ground,
with the parameters listed in Table 1. Note that poor ground

Table 1: Parameters of three lower half-space media.

� Medium 𝜀′𝑟 𝜎 (S/m)

1 seawater 80 4
2 rich soil 16 10−2

3 poor ground 4 2×10−4

has also been referred to as urban ground [46, Appendix A-
6]. For these representative media, in Table 2 we list three
parameters of particular interest, viz., |𝜀𝑟 |, loss tangent tan𝛿,
and |𝑘 𝑝 − 𝑘1 |/𝑘1, evaluated for the three media at four sample
operating frequencies, viz., 30MHz, 900MHz, 2.4GHz, and
28GHz, selected from a wide range, from HF to G5. For
simplicity, we have assumed that 𝜀′𝑟 and 𝜎 are frequency-
independent. The parameter |𝑘 𝑝 − 𝑘1 |/𝑘1, which represents
the normalized distance of the Sommerfeld pole 𝑘 𝑝 from
the branch point 𝑘1 associated with the upper half-space and
which also appears in the Sommerfeld’s numerical distance,
plays an important role in the asymptotic behavior of the sur-
face field. Note that the effect of the frequency increase is
to reduce tan𝛿 with the concomitant reduction in |𝜀𝑟 |, and
to increase |𝑘 𝑝 − 𝑘1 |/𝑘1. However, the change in the last
two parameters is only significant for seawater and is almost
imperceptible for rich soil and, especially, poor ground.

We have validated the asymptotic field formulas against
the “exact” results generated using a rigorous numerical in-
tegration of the Sommerfeld integrals [47, 48], and in some
cases also against completely independent results obtained
from the commercial software FEKO [49].

5.1. On-surface configuration results
We begin with the on-surface transmitter-receiver configura-
tion, where ℎ = 𝑧 = 0. In Fig. 3 we plot the asymptotic field
(52) and its components over a three-decade 𝜌 range for sea-
water at the operating frequency of 30MHz. We note that
the total field initially follows a 𝜌−1 (−20dB/decade) asymp-
tote and then transitions to 𝜌−2 (−40dB/decade) asymptote
in the far zone. This behavior is the result of the interac-
tion of the lateral wave, which has the 𝜌−2 dependence in
the entire range, and the Norton wave, which initially also
behaves as 𝜌−2, but then gradually transitions to 𝜌−3 asymp-
tote. The branch cut wave does not contribute in this case,
in view of its strong exponential decay. The behavior of the
Norton wave (31) changes depending on the magnitude of
the numerical distance 𝑝, which is proportional to 𝜌/𝜆0, but
with a multiplicative factor, which in the on-surface case is
equal to |𝑘 𝑝 − 𝑘1 |/𝑘1 (see Appendix C). As may be gathered

Figure 3: Plots of |𝐸𝑧1 | and its components vs. 𝜌 in the
on-surface configuration (ℎ = 𝑧 = 0) for seawater at 30MHz.
The total asymptotic field is indicated by a full blue line, the
lateral wave by a dashed green line, and the Norton wave by a
dotted red line. The branch cut wave is absent due to its
strong exponential decay in this case.

from Table 2, the latter parameter can be very small if the
media contrast is high, which is indeed the case for seawater
at 30MHz. Therefore, a small 𝑝 does not necessarily im-
ply a small 𝜌. In view of (73), we note that 𝐹 (𝑝) ≈ 1 for
|𝑝 | ≪ 1, and thus F (𝑝) ≈ 1+1/(2𝑝), where the term 1/(2𝑝)
is dominant for small 𝑝, so that the Norton wave (31) initially
exhibits a 𝜌−2 range dependence. However, for larger values
of |𝑝 | the behavior of 𝐹 (𝑝) evolves towards the asymptotic
form (74) with the leading term −1/(2𝑝), since the surface
wave is absent in the non-plasmonic case, as discussed in
Appendix E, and this leading term is cancelled by the 1/(2𝑝)
term that modifies 𝐹 (𝑝) in (32), which results in a 𝜌−3 range
dependence. We may thus take |𝑝 | = 1 as the demarcation
point where the transition between the 𝜌−2 and 𝜌−3 asymp-
totes begins [37], and from this condition we obtain the “knee
value” of 𝜌 as

𝜌knee/𝜆0 ≈
1

2𝜋 |𝑘 𝑝 − 𝑘1 |/𝑘1
≈ |𝜖 |

𝜋
(53)

which is seen to be inversely proportional to the normalized
distance of 𝑘 𝑝 from 𝑘1, with the second approximate expres-
sion applicable if |𝜖 | ≫ 1. In the case of Fig. 3, we find
𝜌knee/𝜆0 ≈ 763. Note that to the left of this point, where
𝜌 < 𝜌knee, there is a partial cancellation between the Norton
wave and the lateral wave, which results in a 𝜌−1 initial be-
havior of the net total field. In fact, the lateral wave cancels
the term associated with 1/(2𝑝) in F (𝑝). To the right of the
knee point, on the other hand, there is initially a constructive
interference of the Norton and lateral waves, resulting in a
slight “bump” in the net field, but then the Norton wave falls
below the 𝜌−2 asymptote of the lateral wave and becomes
inconsequential when 𝜌/𝜆0 exceeds the cut-off value given
by (85) (see Appendix F). Hence, beyond this point, which in

7
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Table 2: Media parameters at different frequencies.

seawater rich soil poor ground

𝑓 |𝜀𝑟 | tan𝛿 |𝑘 𝑝−𝑘1 |/𝑘1 |𝜀𝑟 | tan𝛿 |𝑘 𝑝−𝑘1 |/𝑘1 |𝜀𝑟 | tan𝛿 |𝑘 𝑝−𝑘1 |/𝑘1

30 MHz 2.4×103 30 2.1×10−4 17.1 0.37 2.8×10−2 4 3×10−2 0.11
900 MHz 113.1 1 4.4×10−3 16 1.3×10−2 3×10−2 4 10−3 0.11
2.4 GHz 85.4 0.37 5.8×10−3 16 4.7×10−3 3×10−2 4 3.7×10−4 0.11
28 GHz 80 3.2×10−2 6.2×10−3 16 4×10−4 3×10−2 4 3.2×10−5 0.11

the present case is found at 𝜌/𝜆0 ≈ 2.3×104, the total field is
essentially given by just the lateral wave (51).

In Fig. 4 we present similar results for poor ground at
28GHz. Note that in this low-loss case the branch cut wave
does enter the picture. Furthermore, the Norton wave knee

Figure 4: Plots of |𝐸𝑧1 | and its components vs. 𝜌 in the
on-surface configuration (ℎ = 𝑧 = 0) for poor ground at
28GHz. The total asymptotic field is indicated by a full blue
line, the lateral wave by a dashed green line, and the Norton
wave by a dotted red line. In contrast to the case of Fig. 3, the
branch cut wave is now present and is indicated by a dash-dot
orange line, but the lateral wave and the total field plots
overlap and are indistinguishable, except at the beginning of
the plotting range.

point is now found at 𝜌knee/𝜆0 ≈ 1.5, which lies outside the
plotting range, and the cut-off point at 𝜌/𝜆0 ≈ 45. Note that
the net total field is essentially given by the lateral wave,
which follows 𝜌−2 asymptote with superposed wiggles due to
the interference from the branch cut wave, before the latter is
eventually annihilated by the exponential decay. The error in
the asymptotic field relative to the exact result was found as
2.4×10−3 %, when averaged over the range 𝜌 > 100𝜆0.

5.2. Elevated near-ground configuration results
We next turn attention to the elevated transmitter-receiver
configuration with ℎ > 𝑧 > 0, where we compute the field at
a constant level above the interface as we vary the horizontal
distance from the dipole. In Fig. 5 we plot the total asymptotic

field (49) and its constituents for a dipole at ℎ = 20m over
seawater at 30MHz, with 𝑧 = 2m and 𝜌 varying over a four-
decade range. Note that (ℎ+ 𝑧) = 2.2𝜆0 in this case. The total

Figure 5: Plots of |𝐸𝑧1 | and its components vs. 𝜌 at a fixed
𝑧 = 2m for a 30MHz dipole at ℎ = 20m above seawater. The
total asymptotic field is indicated by a full blue line, the
geometrical-optics field by a dashed red line, the lateral wave
by a dash-dot green line, and the Norton wave by a dotted
orange line.

Figure 6: Plot of the magnitude of the numerical distance 𝑝

vs. 𝜌 for the case of Fig. 5.

8
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field initially follows 𝜌−1 asymptote, and gradually transitions
to 𝜌−2 asymptote in the far zone. We note that in the near
zone the geometrical-optics field is the dominant component,
and that this role is largely taken over by the lateral wave
in the far zone. The branch cut wave is absent, due to its
strong exponential decay in this case. The Norton wave is
most significant in the intermediate range, where it evidently
contributes a slight “bump” to the total field. This behavior is
explained by the plot in Fig. 6, which shows the corresponding
numerical distance |𝑝 |. It may be confirmed that this plot
falls much below the Ω𝑁 demarcation line (see Appendix F),
which confirms the strong influence of the Norton wave in
this case. We note that the dip in the |𝑝 | curve corresponds
to the peak of the Norton wave in Fig. 5. The error in the
asymptotic field relative to the exact result was in this case
found as 2.7× 10−3 %, when averaged over the range 𝜌 >

100𝜆0. We have also applied the Norton asymptotic formula
of Appendix D to this case and found that the average error
increased to 4.6×10−2 %.

We next consider a 900MHz dipole at ℎ = 3m above rich
soil, with the field observed at 𝑧 = 1m and 𝜌 varying over
a three-decade range. Note that (ℎ + 𝑧) ≈ 12𝜆0 in this case.
We plot the asymptotic field components in Fig. 7, where we

Figure 7: Plots of |𝐸𝑧1 | and its components vs. 𝜌 at a fixed
level 𝑧 = 1m for a 900MHz dipole at ℎ = 3m above rich soil.
The total field and the geometrical-optics field plots are
indistinguishable.

note that the total field is now completely determined by the
geometrical-optics field, as the full blue and dashed red lines
overlap and are indistinguishable. Evidently, the contributions
of the lateral and Norton waves are negligible in the entire
horizontal range considered. The insignificance of the Norton
wave in this case could have been anticipated, based on our
discussion in Appendix F, since (ℎ+ 𝑧) > 10𝜆0.

As the next example, in Fig. 8 we present results for a
28GHz dipole at ℎ = 20m over poor (urban) ground, with the
field observed at the 𝑧 = 2m and 𝜌 varied over a five-decade
range. Note that (ℎ+ 𝑧) ≈ 2055𝜆0 in this case. We find again
that the dipole field is fully determined by the geometrical-

Figure 8: Plots of |𝐸𝑧1 | and its components vs. 𝜌 at a fixed
𝑧 = 2m for a 28GHz dipole at ℎ = 20m above poor ground.
The total asymptotic field is indicated by a full blue line, the
geometrical-optics field by a dashed red line, and the lateral
wave by a dash-dot green line. The total field and the
geometrical-optics field plots are indistinguishable.

optics component.

To further investigate the near-ground propagation mech-
anism in the elevated transmitter-receiver configuration, we
present two additional examples in Fig. 9 and 10. These cases
were previously considered by Cardoso et al. [40] and by
Sarkar et al. [32, Fig. 3.15], respectively, and our asymptotic
results appear to be in good visual agreement with the cor-
responding plots presented by these authors. As a further
validation of our formulation, we also include plots of the “ex-
act” results generated by the commercial code FEKO. Since
(ℎ + 𝑧) ≈ 24𝜆0 and ≈ 73𝜆0 in the cases of Fig. 9 and 10, re-
spectively, here too the total field is fully determined by the
geometrical-optics component.

The examples we have presented above confirm that in
typical near-ground wireless communication scenarios, where
(ℎ+𝑧) ⪆ 10𝜆0, the dipole field is dominated by the geometrical-
optics component, and thus the Norton wave, the lateral wave,
and the branch cut wave are all insignificant. As regards the
total field behavior, we note the initial magnitude increase
for 𝜌 ⪅ ℎ, and then oscillations—about what appears to be a
𝜌−1 asymptote, which eventually die out, as the field gradu-
ally transitions to a 𝜌−2 asymptote. Note, however, that this
𝜌−2 asymptotic behavior is not associated with the lateral
wave—as was the case in the on-surface configuration, but
is apparently due to the first-order geometrical-optics wave!
The initial field increase may be explained by the fact that,
close to the dipole where 𝜌 < (ℎ− 𝑧), the factor sin2 𝜃1/Ω1 in
(50) is growing linearly with 𝜌. The oscillatory field pattern
about the initial 𝜌−1 asymptote is due to the interference of
the first-order direct wave with the specularly reflected wave,
except near the Brewster angle. In the intermediate range we

9
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Figure 9: Plots of |𝐸𝑧1 | vs. 𝜌 at a fixed 𝑧 = 1m for a 2.4GHz
dipole at ℎ = 2m above moist soil

(
𝜀′𝑟 = 15, 𝜎 = 2×10−3) .

The asymptotic result indicated by a dash-dot red line is
superimposed on the FEKO result indicated by a full blue
line. These plots are indistinguishable in the figure.

Figure 10: As in Fig. 9, but for a 1GHz dipole at ℎ = 20m
above poor ground, with the field observed at 𝑧 = 2m and 𝜌

varying over a four-decade range.

find

|E𝐺𝑂 | ≈ 1
𝑘1𝜌

√︃
[1+Γ(𝜃2)]2 −4Γ(𝜃2) sin2 (𝑘1ℎ𝑧/𝜌) (54)

where we have assumed for simplicity that 𝜌 >> (ℎ+ 𝑧) and
that the lower half-space medium is nearly lossless, so that 𝜖
and Γ(𝜃2) may be taken as real-valued. This expression ex-
plains the interference pattern with a lull where 𝜃2 corresponds
to the pseudo-Brewster angle, at which Γ(𝜃2) ≈ 0. These os-
cillations are superimposed on 𝜌−1 asymptote and have a
“period” increasing with 𝜌. Their amplitude is also growing
as 𝜃2 approaches 𝜋/2 and Γ(𝜃2) tends toward −1. However,
when 𝜌 eventually reaches the range where 𝑘1ℎ𝑧/𝜌 ≪ 1, the

oscillations cease and we transition to

|E𝐺𝑂 | ≈ 2(ℎ+ 𝑧)
𝑘1𝜌2

√︄
𝜖2

𝜖 −1
+

(
𝑘1ℎ𝑧

ℎ+ 𝑧

)2
(55)

which exhibits the 𝜌−2 dependence characteristic of the lateral
wave E𝐿 . Incidentally, this expression also indicates that the
far-zone field strength can increase with the distance of the
receiver from the ground. The demarcation point where the
𝜌−2 asymptote begins may be estimated as 𝜌/𝜆0 = 4𝜋ℎ𝑧/𝜆2

0.
We should note here that neither our theoretical analysis,
nor the numerical results—which have been independently
confirmed—indicate the presence of a 𝜌−1.5 (−30dB/decade)
asymptote in the near-ground field of a dipole, as claimed by
some authors [30–32, 50].7

5.3. Fixed-radius radiation pattern results
We conclude this section with the results in Fig. 11, where
we present radiation pattern plots at a fixed radius 𝑟 for a
dipole at ℎ = 2m over poor ground, at two different operat-
ing frequencies, viz., 900MHz and 2.4GHz. The excellent
agreement of the asymptotic and exact results for all elevation
angles should be noted. The observed pattern ripples are due
predominantly to the interference of the first-order direct and
specularly reflected waves, which constitute the geometrical-
optics field. As was also the case in the near-ground field
pattern at a constant 𝑧 level, a lull in the ripples occurs near
the pseudo-Brewster angle, where the reflected wave has a
sharp dip and cannot interfere with the direct field. In the
present case this dip occurs at 𝜃 ≈ 64.4◦, which corresponds
to the pseudo-Brewster angle 𝜃2 = 𝜃𝐵 ≈ 63.4◦. Note that in
this low-loss case the dip location is unaffected by the more
than two-fold increase in the operating frequency, which is to
be expected, in view of the weak frequency dependence of the
Brewster zero in a low-loss case.8

6. Conclusion
This paper has dealt with the problem of a vertical Hertzian
dipole radiating over a half-space, often referred to as the
Sommerfeld half-space problem. We have briefly reviewed
its history and the most pertinent literature, beginning with
Sommerfeld’s seminal paper and including the most recent
developments. We have also addressed some controversies
associated with this problem, both old and new, clarifying any
lingering confusions and correcting certain misconceptions in
the recent literature. To gain more insight into the near-ground
wireless propagation mechanisms in modern high-frequency
applications, where the media losses are relatively small, we
have derived the asymptotic field of a vertical dipole above
a half-space medium by the modified saddle-point method
carried out to the second order in the inverse radial distance.
We have identified in the resulting expression the first-order
geometrical-optics field and the second-order direct, reflected,
branch-cut and Norton waves. The second-order direct and
reflected waves we lump under the moniker of a lateral wave.

10
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(𝑎)

(𝑏)

Figure 11: Radiation pattern at 𝑟 = 100m of a dipole located
at ℎ = 2m over poor ground at (𝑎) 900MHz and (𝑏) 2.4GHz.
Asymptotic results indicated by a red dash-dot line are
superposed on the exact results indicated by a full blue line.

The geometrical-optics field vanishes when the dipole and
the observation points are on the interface, and may thus be
referred to as space wave. On the other hand, the Norton wave,
which is associated with the pole of the reflection coefficient,
is most significant at the interface, in the horizontal range
where a complex parameter called numerical distance is small
to moderate. For a sufficiently large numerical distance the
Norton wave is dominated by the lateral wave and the surface
field behaves asymptotically as 𝜌−2. The branch cut wave con-
tribution is only visible in cases of vanishingly-small losses.
In the elevated configuration and a typical near-ground wire-
less communication scenario with the transmitting antenna
located more than approximately ten wavelengths above the
surface, the Norton wave is insignificant and the radiation
field is for all practical purposes solely determined by the
geometrical-optics space wave. Furthermore, the field at a
constant 𝑧 level is initially oscillatory about 𝜌−1 asymptote
and it gradually transitions to a smooth 𝜌−2 asymptotic behav-
ior as 𝜌 increases. It should be emphasized here that in this
case the 𝜌−2 lateral wave-like asymptote results from a partial

cancellation of the first-order direct and specularly reflected
waves in the geometrical-optics field, and not from the Norton
wave, which has negligible effect in this scenario. In the in-
termediate zone between the 𝜌−1 asymptote and the final 𝜌−2

asymptote the slope varies continuously and there is no dis-
cernible 𝜌−1.5 asymptote, contrary to what has been claimed
in the recent literature. We have illustrated these theoretical
findings by numerical results for various transmitter-receiver
configurations of interest and different lower half-space me-
dia, including seawater and urban ground, and have validated
them against commercial code results.

Appendices

A. Solution of the Sommerfeld half-space
problem

The 𝑧 component of the electric field radiated in the upper
half-space by the vertical Hertzian dipole of Fig. 1 may be
found as [37]

𝐸𝑧1 = − 𝑗𝜔

(
1+ 1

𝑘2
1

𝜕2

𝜕𝑧2

)
𝐴𝑧1 =

𝑗𝜔

𝑘2
1

1
𝜌

𝜕

𝜕𝜌

(
𝜌
𝜕𝐴𝑧1
𝜕𝜌

)
(56)

where 𝐴𝑧1 is the 𝑧 component of the magnetic vector potential
above the surface, which may be expressed as

𝐴𝑧1 = 𝜇0𝑘1
𝐼ℓ

4𝜋

(
𝑒− 𝑗𝑘1𝑟1

𝑘1𝑟1
+I

)
(57)

with

I =

∫ ∞

−∞
Γ(𝑘𝜌)

𝑒− 𝑗𝑘𝑧1 (𝑧+ℎ)

2 𝑗 𝑘𝑧1
𝐻

(2)
0 (𝑘𝜌𝜌)

𝑘𝜌𝑑𝑘𝜌

𝑘1
(58)

where 𝑘𝜌 is the transverse wavenumber, 𝐻 (2)
0 (·) is the zero-

order Hankel function of the second kind, and Γ is the half-
space reflection coefficient given as

Γ(𝑘𝜌) =
𝑘𝑧1 − 𝑘𝑧2/𝜖
𝑘𝑧1 + 𝑘𝑧2/𝜖

, 𝑘𝑧𝑛 =

√︃
𝑘2
𝑛 − 𝑘2

𝜌 . (59)

Note that in (57) the first term in the parentheses represents
the direct whole-space potential of the dipole. Although it
has been a common practice to also extract in a closed form
an image dipole term—positive or negative, the resulting to-
tal asymptotic potential remains the same, provided that the
additive modified saddle-point method is employed [25, 51].

To facilitate the asymptotic evaluation of (58) by the
saddle-point method, we approximate the Hankel function
in the integrand by its large-argument form

𝐻
(2)
0 (𝑘𝜌𝜌) ≈

√︄
2 𝑗

𝜋𝑘𝜌𝜌
𝜛(𝑘𝜌𝜌) 𝑒− 𝑗𝑘𝜌𝜌 (60)

with
𝜛(𝑘𝜌𝜌) = 1+ 𝑗

8𝑘𝜌𝜌
(61)
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where we have retained the first two terms of the expansion,
and as a result, we obtain

I ≈
∫ ∞

−∞

Γ(𝑘𝜌𝜌)√︁
2 𝑗𝜋𝑘1𝜌

√︄
𝑘𝜌

𝑘1
𝜛(𝑘𝜌𝜌) 𝑒− 𝑗 [𝑘𝑧1 (𝑧+ℎ)+𝑘𝜌𝜌] 𝑑𝑘𝜌

𝑘𝑧1
.

(62)
Since the approximation (60) is applicable for |𝑘𝜌𝜌 | ≫ 1,
its use in (62) may be questioned on the grounds that this
condition is clearly violated on the integration path near the
origin of the 𝑘𝜌 plane. However, since most of the contribution
to the integral arises from the vicinity of the saddle point,
which approaches 𝑘1 for elevation angles near the surface,
the use of this approximation will still be justified, as long as
𝑘1𝜌≫ 1 [52, Ch. 12]. We note that the effect of the differential
operators in (56) is to introduce a factor − 𝑗𝜔 𝑘2

𝜌/𝑘2
1 in the

integrand of (62).
The longitudinal propagation constants 𝑘𝑧𝑛 in (59) are

double-valued in the complex 𝑘𝜌 plane, which necessitates the
introduction of branch cuts emanating from the branch points
𝑘𝑛, so that 𝑘𝑧𝑛 becomes uniquely defined over a two-sheeted
Riemann surface. It is convenient to choose hyperbolic cuts
given by the condition ℑ𝑚 𝑘𝑧𝑛 = 0, so that the sign of ℑ𝑚 𝑘𝑧𝑛
remains unchanged on an entire Riemann sheet. We will

Figure 12: (𝑎) Proper
(
ℑ𝑚 𝑘𝑧𝑛 < 0

)
and (𝑏) improper(

ℑ𝑚 𝑘𝑧𝑛 > 0
)

Riemann sheets in the complex 𝑘𝜌 plane for
the case of small losses, with the branch cuts indicated by
wiggly lines. In the losses case the branch points ±𝑘𝑛 move
to the real axis and the hyperbolic branch cuts fall on the real
and imaginary axes.

then designate the sheet where ℑ𝑚 𝑘𝑧𝑛 < 0 as proper, and
the sheet where ℑ𝑚 𝑘𝑧𝑛 > 0 as improper. These sheets are
also referred to as the top and bottom sheets, respectively,
and their properties are illustrated in Fig. 12, where in the
shaded regions ℜ𝑒 𝑘𝑧𝑛 > 0. The integrand functions in (58)
and (62) involve both 𝑘𝑧1 and 𝑘𝑧2 and may thus be defined
over a four-sheeted Riemann surface illustrated in Fig. 13,
and the integration path follows the real axis on Sheet 𝐼, as
indicated in Fig. 14. The Hankel function introduces another
branch cut along the negative-real axis, which has no physical
significance and will be of no further consequence. The path
𝐶 should skirt this branch cut and the second-quadrant branch
points below, and the fourth-quadrant singularities above. In

Figure 13: Schematic representation of the four-sheeted
Riemann surface associated with 𝑘𝑧1 and 𝑘𝑧2. A continuous
transition between two sheets can be effected by crossing a
branch cut joining these sheets.

Figure 14: Integration path 𝐶 along the real axis on the top
Riemann sheet. The second-quadrant singularities are not
shown for simplicity.

addition to the branch points, the integrand has poles ±𝑘 𝑝 on
Sheet 𝐼, which are roots of the denominator of the reflection
coefficient Γ(𝑘𝜌), and thus satisfy the dispersion relation

𝑘𝑧1 + 𝑘𝑧2/𝜖 = 0 . (63)

The fourth-quadrant pole, first uncovered by Sommerfeld [5],
is given as

𝑘 𝑝 = 𝑘1

√︂
𝜖

𝜖 +1
(64)

and its approximate position with respect to the branch cuts is
indicated in Fig. 14. In addition to the poles ±𝑘 𝑝 on Sheet 𝐼,
there are also poles at the same locations on Sheet 𝐼𝑉 , as
well as zeros (sometimes referred to as Brewster zeros) on
Sheets 𝐼 𝐼 and 𝐼 𝐼 𝐼 [53, Sec. 15.B]. Note that, in view of the
properties of 𝑘𝑧𝑛 illustrated in Fig. 12, the Sheet 𝐼 pole 𝑘 𝑝

is located in the region of the 𝑘𝜌 plane where ℜ𝑒 𝑘𝑧1 < 0
and ℜ𝑒 𝑘𝑧2 > 0. Consequently, at this pole the longitudinal
propagation constants in the two half-spaces assume the values
[37]

𝑘𝑧1
���
𝑘𝜌=𝑘𝑝

≡ 𝑘𝑧1𝑝 = −
𝑘 𝑝√
𝜖
= − 𝑘1√

𝜖 +1
(65)

𝑘𝑧2
���
𝑘𝜌=𝑘𝑝

≡ 𝑘𝑧2𝑝 =
√
𝜖 𝑘 𝑝 =

𝑘1𝜖√
𝜖 +1

(66)

which clearly satisfy the dispersion relation (63).9

The integration path 𝐶 in Fig. 14 may be deformed around
the hyperbolic branch cuts, capturing in this process the Som-
merfeld pole 𝑘 𝑝 on Sheet 𝐼 [54]. Consequently, in this rep-
resentation a term −2𝜋 𝑗𝑅𝑝, where 𝑅𝑝 is the residue of the
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integrand of (58), should be included together with the two
branch cut integrals along the paths 𝐶1 and 𝐶2. This residue
may readily be found as

𝑅𝑝 =
𝑗𝜖2

𝜖2 −1
𝑘𝑧1𝑝

𝑘1
𝑒− 𝑗𝑘𝑧1𝑝 (𝑧+ℎ) 𝐻 (2)

0 (𝑘 𝑝𝜌)

≈ 𝑗𝜖2

𝜖2 −1
𝑘𝑧1𝑝

𝑘1

√︄
2 𝑗

𝜋𝑘 𝑝𝜌
𝜛(𝑘 𝑝𝜌) 𝑒− 𝑗𝑘𝑧1𝑝 (𝑧+ℎ)𝑒− 𝑗𝑘𝑝𝜌

(67)

where in the second expression we have approximated the
Hankel function using the large-argument form (60). The
leading term of this formula is recognized as a cylindrical
variant of the Zenneck wave [6], and has been variously re-
ferred to as Uller-Zenneck wave, Sommerfeld-Zenneck wave,
or simply Zenneck wave. This wave propagates along the
interface with a slow 1/√𝜌 amplitude decay due to the radial
spread of energy, and decays exponentially in the transverse
direction, since ℑ𝑚 𝑘𝑧1𝑝 < 0 on Sheet 𝐼. In view of the Som-
merfeld pole location to the left of 𝑘1 in the non-plasmonic
case, the Zenneck wave propagates along the interface with
the phase velocity greater than the speed of light and is thus
termed a “fast” wave.10 The path 𝐶 in Fig. 14 can also be
deformed around vertical lines emanating downwards from
the fourth-quadrant branch points, in which case the Sommer-
feld pole on Sheet 𝐼 is not intercepted and does not explicitly
contribute to the resulting field representation [1, p. 55], [38].

B. Modified saddle-point integration method
Consider the integral

𝐼 (Ω) = 𝑒− 𝑗Ω

√
𝜋Ω

∫ ∞

−∞
𝐺 (𝑠) 𝑒−Ω𝑠2

𝑑𝑠 (68)

where 𝐺 (𝑠) has a pole 𝑠𝑝 near the origin with a residue 𝑟𝑝
and Ω > 0 is a large parameter. Applying the second-order
additive modified saddle-point method [22, Ch. 4], [21, 25],
we obtain the approximation

𝐼 (Ω) ≈
{[
𝐺 (0) + 𝐺′′ (0)

4Ω

]
+
𝑟𝑝

𝑠𝑝

[
𝐹 (𝑝) + 1

2𝑝

]}
𝑒− 𝑗Ω

Ω
(69)

where
𝑝 = Ω𝑠2

𝑝 (70)

is a parameter related to the Sommerfeld numerical distance
on which we elaborate in Appendix C, and

𝐹 (𝑝) = 1− 𝑗
√
𝜋𝑝𝑤

(
−√

𝑝
)

(71)

is the Sommerfeld-Norton attenuation factor [20, 55], here
expressed in terms of the Faddeeva function [56], which is
related to the complementary error function and is given as
[57, Eq. 7.2.3]

𝑤(𝑧) = 𝑒−𝑧
2
erfc(− 𝑗 𝑧) = 𝑒−𝑧

2 2
√
𝜋

∫ ∞

− 𝑗𝑧

𝑒−𝑡
2
𝑑𝑡 . (72)

The attenuation function 𝐹 (𝑝) has the absolutely-convergent
ascending-power series representation [20, 55]

𝐹 (𝑝) ≈ 1− 𝑗
√
𝜋𝑝 𝑒−𝑝 −2𝑝 + (2𝑝)2

1 ·3 − (2𝑝)3

1 ·3 ·5 + · · · (73)

and the asymptotic expansion

𝐹 (𝑝) ∼ −2 𝑗
√
𝜋𝑝 𝑒−𝑝U

(
ℑ𝑚 𝑝

)
− 1

2𝑝
− 1 ·3
(2𝑝)2 −

1 ·3 ·5
(2𝑝)3 − · · ·

(74)
where U is the Heaviside unit-step function. The field com-
ponent associated with the first term in (74) has the character-
istics of a trapped surface wave,11 but is only present when
ℑ𝑚 𝑝 > 0, hence the expansion (74) has a different form de-
pending on the argument of 𝑝, which is a property known as
the Stokes phenomenon [24]. Although half of this term also
appears in (73), it cannot be considered in isolation, since it
is “swamped” by the other terms of the power series. The
minimum value of 𝑝 for which the asymptotic series (74) is
applicable depends on the accuracy required, but we may use
the condition |𝑝 | ⪆ 10 as a rule of thumb [23, 24]. The magni-
tude of the error will be bounded by the first term neglected in
the asymptotic expansion. We note that the term 1/(2𝑝) mod-
ifying 𝐹 (𝑝) in (69) asymptotically cancels the leading term
of (74) in the non-plasmonic case where the surafce wave is
absent. This term arises from the second-order member in the
Maclaurin series expansion of 𝐺 (𝑠) after the pole has been
subtracted out.

C. The Sommerfeld numerical distance
A parameter that plays a crucial role in Sommerfeld’s asymp-
totic solution12 is the numerical distance defined as [5]

𝜚 = − 𝑗 (𝑘1 − 𝑘 𝑝)𝜌 ≈ − 𝑗 𝑘1𝜌

2𝜖
(75)

where 𝑘 𝑝 is the Sommerfeld pole (64), and where the ap-
proximation applies if |𝜖 | ≫ 1. Strictly speaking, the term
“numerical distance” (“Numerische Entfernung” in German)
should be applied to |𝜚 |, rather than to the complex-valued
𝜚 itself, but it has been a common practice not to make this
distinction. Note that 𝜚 is a difference in the complex phase
between the Zenneck wave and the space wave after having
travelled along the interface a distance 𝜌 from the dipole.
Sommerfeld observed that the behavior of the asymptotic
surface field was determined not by 𝜌 or 𝑘1𝜌 alone, but by
the numerical distance (75), which also includes the effect
of the dielectric constants of the media. Consequently, the
same values of 𝜚 result in the asymptotic fields of similar
magnitude and nature, even if the radial distance 𝜌 from the
dipole is much different, which Sommerfeld dubbed the law
of similarity of wireless telegraphy [58]. Furthermore, all
circumstances which decrease 𝜚, increase the received field
strength. For example, the fact that 𝜚 is much smaller for
seawater (due to its relatively high conductivity) than for fresh
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water or dry ground (for the same distance 𝜌), explains the
good radio reception at sea [59, p. 256].

If we were to extend the concept of Sommerfeld’s numer-
ical distance to a dipole and field points above the interface,
we would replace 𝜚 by [23]

𝑝 = − 𝑗 (𝑘1 − 𝒌 𝑝 · 𝒓2)𝑟2 (76)

where 𝒓2 is the unit vector oriented from the dipole image
location to the field point and 𝒌 𝑝 = 𝝆̂ 𝑘 𝑝 + 𝒛 𝑘𝑧1𝑝 with 𝑘𝑧1𝑝
given in (65), is the wavevector of the Zenneck wave. Note
that 𝑟2 is the distance travelled by a wave from the dipole
antenna to the receiver after undergoing a specular reflection
from the interface at an angle 𝜃2, as illustrated in Fig. 1. Upon
evaluating the dot product in (76) we obtain

𝑝 = − 𝑗Ω2

(
1−

𝑘 𝑝

𝑘1
sin𝜃2 −

𝑘𝑧1𝑝

𝑘1
cos𝜃2

)
(77)

and thus our generalized numerical distance is exactly the
parameter (34) which arises in the asymptotic field expression
obtained by the modified saddle-point method. We note that
(77) correctly reduces to Sommerfeld’s 𝜚 in (75) for 𝜃2 = 𝜋/2.
In the high-contrast case, where |𝜖 | ≫ 1, we may use in (34)
the approximations [19]

𝑝 ≈ − 𝑗Ω2

(
1− sin𝜃2 +

cos𝜃2√
𝜖

+ sin𝜃2
2𝜖

)
≈ − 𝑗Ω2

2

(
cos𝜃2 +

1
√
𝜖

)2
≈ 𝜚

(
1+

√
𝜖
ℎ+ 𝑧
𝜌

)2 (78)

where in the last two expressions we further assume small
elevation angles, i.e., (ℎ+ 𝑧)/𝜌≪ 1. The rightmost expression
in (78) is thus a generalization of the original Sommerfeld’s
numerical distance (75) to the elevated case, but is only valid
near the interface. This formula was first derived by Weyl [7]
and later by Sommerfeld in his second paper [8].

To illustrate the dependence of 𝑝 on the elevation angle
and the media, we plot in Fig. 15 its normalized magnitude
and phase angle vs. 𝜃2 for seawater, rich soil, and urban
ground, computed at the operating frequency of 900MHz. We
compare in these plots the modified saddle-point numerical
distance (77) and the Norton numerical distance (81). The
plots for the three media are similar in character, with the
argument of 𝑝 in the negative range, which has important
consequences for the appearance of the Zenneck wave in the
asymptotic field, as discussed in Appendix E. The magnitude
of 𝑝 decreases as the elevation angle approaches the interface
and at 𝜃2 = 90◦ it reaches much smaller values for seawater
than for urban ground. These minimum values of |𝑝 | are di-
rectly related to the distance of the Sommerfeld pole 𝑘 𝑝 from
the branch point 𝑘1, listed in Table 2. The Norton numerical
distance is in close agreement with the modified saddle-point
numerical distance for elevation angles near the interface, es-
pecially in the high-contrast seawater and rich soil cases, but
it grows more rapidly in magnitude than the latter when 𝜃2
decreases, approaching infinity near the dipole axis.

Figure 15: Plots of the normalized numerical distance 𝑝/Ω2
vs. 𝜃2 for seawater, rich soil, and poor ground, computed at
900MHz. The magnitude is indicated by full lines and the
phase angle by dash-dot lines. The modified saddle-point
numerical distance (77) is plotted in blue and the Norton
numerical distance (81) in red.

D. The asymptotic formula of Norton
The asymptotic solution of Norton [11] may be expressed
as [60, 61], [4, Sec. 3.7]

E ≈ E𝐺𝑂 +E𝑁 (79)

where E𝐺𝑂 is the geometrical-optics field introduced in (50)
and E𝑁 is the famous Norton surface wave, which is given as

E𝑁 = sin2 𝜃2 [1−Γ(𝜃2)] 𝐹 (𝑝)
𝑒− 𝑗Ω2

Ω2
(80)

where 𝐹 (𝑝) is the Sommerfeld-Norton attenuation factor in-
troduced in (71) and 𝑝 is the numerical distance parameter
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given as

𝑝 =
− 𝑗Ω2

2sin2 𝜃2
(cos𝜃2 +Δ)2 . (81)

Note that Γ and Δ are defined in (7). The asymptotic expres-
sion for 𝐸𝑧1 obtained by Norton [11] had some errors [61]
and also included additional second- and third-order direct
and image dipole terms. Norton derived his “practical for-
mula” from the van der Pol integral [12], and to arrive at
(81) he replaced the term 1/

√
𝜖 with Δ, which was an ad-hoc

step to make his solution consistent with that of Wise [13]
for elevation angles away from the interface. We note that
under the high-contrast approximation the Norton numerical
distance (81) reduces to the second approximate expression in
(78)—apart from the sin2 𝜃2 term in the denominator, which
was actually missing in the original Norton formulation, but
was later restored in his wartime classified report [62].13 The
effect of this denominator term is to increase the numerical
distance, and thus deemphasize the Norton surface wave, for
large elevation angles.

E. Is there in the field of a transmitter a
Zenneck wave?

This question already appeared in the title of a paper by Ott
published 70 years ago [63]. The key to the answer lies in the
first term of the asymptotic expansion (74) of the Sommerfeld-
Norton attenuation factor 𝐹 (𝑝), which appears in the Norton
wave (31). To determine the contribution of this term to E (2)

𝑁
,

we first note that

𝑒−𝑝𝑒− 𝑗Ω2 = 𝑒− 𝑗𝑘𝑧1𝑝 (𝑧+ℎ) 𝑒− 𝑗𝑘𝑝𝜌 (82)

where we have used (77), and upon noting that 𝑝 = Ω2𝑠
2
𝑝 we

obtain
−2𝜋 𝑗

𝑟𝑝√
𝜋Ω2

𝑒− 𝑗𝑘𝑧1𝑝 (𝑧+ℎ) 𝑒− 𝑗𝑘𝑝𝜌 (83)

where 𝑟𝑝 is given in (35)-(36). Note that apart from a fac-
tor (𝑘 𝑝/𝑘1)2 accounting for the differential operator in (56),
which converts 𝐴𝑧1 into 𝐸𝑧1, the expression (83) is identical to
−2𝜋 𝑗𝑅𝑝 , where 𝑅𝑝 is the Zenneck wave (67) discussed in Ap-
pendix A. However, according to (74), this wave only appears
in the asymptotic field expression when ℑ𝑚 𝑝 > 0. Therefore,
let us examine the argument of 𝑝 = |𝑝 | 𝑒 𝑗𝛽 with 𝜃2 = 𝜋/2,
which corresponds to the limiting SDP in Fig. 2. In this case
(70) reduces to 𝑝 = 𝜚 = − 𝑗 𝑘𝑑𝜌, where 𝑘𝑑 ≡ 𝑘1−𝑘 𝑝 = |𝑘𝑑 | 𝑒 𝑗 𝛼,
and thus 𝛽 = 𝛼− 𝜋/2 will be negative and ℑ𝑚 𝑝 < 0, as long
as 𝛼 < 𝜋/2. We now refer to Fig. 16, where 𝑘1, 𝑘 𝑝, and 𝑘𝑑
are represented as vectors in the complex 𝑘𝜌 plane, and which
shows that the last condition is always satisfied for fast-wave
poles, for which ℜ𝑒 𝑘 𝑝 < 𝑘1. Consequently, the Zenneck
wave (83) will not be present in the asymptotic field of the
dipole over a non-plasmonic half-space with ℜ𝑒 𝜖 > 0, con-
sistent with our observation in Section 4 that a fast-wave pole
located below the limiting SDP in Fig. 2 will never be cap-
tured. We should note here that in the absence of the surface

Figure 16: Demonstration that the argument of 𝑘𝑑 = 𝑘1 − 𝑘 𝑝

is less than 𝜋/2 when the Sommerfeld pole 𝑘 𝑝 lies to the left
of the vertical line passing through the branch point 𝑘1.

wave term, the leading term of the asymptotic form of F (𝑝)
in (32) behaves as 𝑝−2.

The presence of the pole wave in the Norton surface wave
can be tied to the character of Δ, which in the high-contrast
approximation may be viewed as the surface impedance of
the lower medium, normalized to 𝜂0 [20, 61]. It follows from
(81) that arg 𝑝 = 2argΔ− 𝜋/2, and thus the pole wave will
only occur for a “highly inductive” lower half-space, i.e.,
when the argument of Δ is in the range 𝜋/4 ≤ argΔ < 𝜋/2.
This condition holds for a plasmonic medium with 𝜀′

𝑟2 < 0,
in which case the pole wave contributes a surface plasmon
polariton,14 but it can also be satisfied when the surface is
corrugated or is covered by an electrically thin low-loss di-
electric overlayer, in which case the pole wave represents a
“trapped” guided wave mode. The latter situation occurs, for
example, when the ground is covered by asphalt or snowpack,
or when water is overlayed by ice. Consequently, any surface
roughness or medium inhomogeneity may significantly affect
the near-ground propagation mechanism.

F. When is the Norton wave significant?
As noted in Appendix B, the asymptotic expansion of the
Sommerfeld-Norton attenuation factor 𝐹 (𝑝) is applicable for
|𝑝 | ⪆ 10. Furthermore, as demonstrated in Appendix E, the
surface wave term does not arise in (74) for the non-plasmonic
media considered here. Therefore, under these conditions, the
term 1/(2𝑝) in the attenuation function F (𝑝) will cancel
the leading term of (74) and the leading term of (32) will
be −3/(2𝑝)2. Consequently, in view of (70), the Norton
wave E (2)

𝑁
will be of the third order in Ω−1

2 and will become
negligible for a sufficiently large 𝑝, as compared with E (2)

𝑅

in (49), which behaves as Ω−2
2 . It may be argued that at the

cut-off value of |𝑝 |, at which (31) becomes negligible, the
term 3/|2𝑝 |2 should be a small fraction of 1/|2𝑝 |, say 0.05,
which leads to the condition |𝑝 | ⪆ 30, and further to15

𝑟2/𝜆0 ⪆ Ω𝑁 ≡ 15/𝜋��𝑠2
𝑝

�� (84)

where 𝑠2
𝑝 is given in (33). To illustrate how this criterion

depends on the elevation angle and the media, we include in
Fig. 17 the plots of Ω𝑁 vs. 𝜃2 for the three media of Table 1
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Figure 17: Plots of Ω𝑁 vs. 𝜃2 for the three media of Table 1
at 900MHz. The Norton wave E (2)

𝑁
may be omitted if

𝑟2/𝜆0 ⪆ Ω𝑁 .

at the operating frequency of 900MHz. The significance of
these plots is that the Norton wave may be omitted whenever
𝑟2/𝜆0 falls above the line corresponding to the medium con-
sidered. We note that this requirement is most difficult to
satisfy, i.e., the largest values of 𝑟2/𝜆0 are required, when 𝜃2
approaches 90◦, which is the case of surface-to-surface prop-
agation. Incidentally, in the latter case |𝑠2

𝑝 | = |𝑘 𝑝 − 𝑘1 |/𝑘1,
which is the normalized distance of the Sommerfeld pole 𝑘 𝑝

from the branch point 𝑘1, and its values are listed in Table 2.
In the on-surface configuration, where 𝜃2 = 𝜋/2 and 𝑟2 = 𝜌,
the criterion (84) reduces to

𝜌/𝜆0 ⪆
15/𝜋

|𝑘 𝑝 − 𝑘1 |/𝑘1
≈ 30

𝜋
|𝜖 | (85)

where the rightmost expression applies in the high-contrast
case with |𝜖 | ≫ 1.

To further investigate the contribution of the Norton wave
to the near-ground asymptotic field, in Fig. 18 we plot the
magnitude of the numerical distance and the corresponding
magnitude of the attenuation function vs. 𝜌/𝜆0 for the three
media of Table 1 at the operating frequency of 900MHz in
the elevated configuration with ℎ+ 𝑧 = 10𝜆0. We note that the
plots of |𝑝 | for the three media are not monotonically increas-
ing with 𝜌 and have dips at some distance from the dipole.
These dips, which are due to an interplay of the 𝜃2−dependent
terms in (34), move farther away and get deeper for media
with higher losses. For rich soil and poor ground the plots of
|𝑝 | remain above 30, and thus the contribution of the Norton
wave should be negligible in the entire 𝜌 range. For seawa-
ter, however, we may only neglect the Norton wave when 𝜌

exceeds approximately 1000 wavelengths. Similar results for
ℎ+ 𝑧 = 50𝜆0 are given in Fig. 19, where the numerical distance
now remains above the |𝑝 | = 30 threshold for all three media.
We may thus infer from these results that for a ground with
low to moderate losses the Norton wave E (2) may be omitted
in the asymptotic field expression (49) when ℎ + 𝑧 exceeds
approximately 10 wavelengths. Although this conclusion is

Figure 18: Plots of |𝑝 | and |F | vs. 𝜌/𝜆0 for the three media
of Table 1 in the elevated configuration with ℎ+ 𝑧 = 10𝜆0 at
900MHz. The |𝑝 | = 30 level is indicated by the dash-dot line.

based on numerical studies at 900MHz, it should be applica-
ble at higher frequencies as well, since the conductivity losses
decrease with frequency, which results in an increase of the
numerical distance 𝑝, and this in turn further deemphasizes
the Norton wave.
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Notes
1Norton’s solution was later reformulated by Bannister [64], who also

retained the usually omitted second- and third-order geometrical optics terms.
In the early 1990s King [65, 66] developed a new solution for the Sommer-
feld half-space problem, which however was later shown by Michalski and
Jackson [67] to be equivalent to the Norton-Bannister formulation.

2The papers of Pauli and Ott commemorated the 70th and 75th anniver-
saries of Sommerfeld, respectively.

3Although Collin’s solution was published in 2004, it enjoyed a limited
distribution much earlier, in 1968.

4The last decade has also witnessed the introduction of a new “physics-
based” solution of the Sommerfeld half-space problem [68], which has been
shown to be invalid [37, 54, 69, 70], as a result of an incorrect application
of the Schelkunoff integral identity [71]. Unfortunately, this criticism was
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Figure 19: Plots of |𝑝 | and |F | vs. 𝜌/𝜆0 for the three media
of Table 1 in the elevated configuration with ℎ+ 𝑧 = 10𝜆0 at
900MHz.

rejected by the authors [72], who continue to advocate their “Schelkunoff
formulation” and claim that it allegedly provides “accurate results in certain
limited regions” [73].

5The sign of the square root in (2) should be selected by the condition
ℑ𝑚𝜅 ( 𝜉 ) < 0. In what follows, unless otherwise stated, the principal square-
root branch with the positive real part is implied.

6It should be noted here that our usage of the term “lateral wave” is
unconventional. In geophysics this term has a very specific meaning and it
refers to the wave excited by a buried source, which propagates along the
surface with the wavenumber of the air region. However, there has been a
recent trend to also apply it to the surface waves excited by a dipole, which
exhibit inverse-square range dependence, irrespective of the location of the
source [3, 74, 75].

7It appears that in the relevant field plots in [32] the 𝜌−1.5 asymptote
has been arbitrarily inserted in the transitory range between the 𝜌−1 and
𝜌−2 asymptotes, where in fact the slope changes continuously. Furthermore,
it is claimed that the 𝜌−1.5 behavior is associated with the Norton surface
wave, under the assumption that the numerical distance 𝑝 is small in the
intermediate 𝜌 range. However, as we have demonstrated in Appendix F, | 𝑝 |
is always much larger than unity in a typical elevated transmitter-receiver
configuration with (ℎ + 𝑧) > 10𝜆0, and consequently the Norton wave is
insignificant and cannot dominate the field behavior in this range.

8At the complex Brewster angle the reflection coefficient vanishes and
there is no reflected wave. This Brewster zero is at the same location in the
𝑘𝜌−plane as the Sommerfeld pole 𝑘𝑝 , except on Sheet 𝐼 𝐼 , as mentioned in
Appendix A. Accordingly, both have exactly the same frequency dependence
and an observation that a dip in the reflected field pattern is unaffected by even
a large change of the frequency in a low-loss case should be unsurprising—

and definitely does not indicate that the Zenneck wave corresponds to the
zero of the reflection coefficient, rather than the pole, as claimed by in [73].
The Zenneck wave is of course absent in the asymptotic field of the dipole
(see Appendix E), and thus cannot contribute to the radiation pattern. Yet,
these authors state that “for a two-media problem, there is a Brewster zero
and hence a Zenneck-type wave propagating over the surface where the
evanescent field distribution is independent of frequency” and that “cellular
wireless communication takes place through the Zenneck/Sommerfeld wave
type,” which they further amplify in a book section entitled “Cellular wireless
propagation occurs through the Zenneck wave and not surface waves” [31].
It thus appears that, having associated the Zenneck wave with the zero of
the reflection coefficient, and having observed a dip in the reflected field
pattern at the Brewster’s angle, these authors have incorrectly concluded that
the near-ground propagation in wireless communication occurs through a
Zenneck wave.

9Unless the correct choice of the square-root branches in 𝑘𝑧𝑛 is enforced,
a numerical computation of the root of the dispersion function (63) may end
in failure. For example, it has been reported [73, 76] that computer search
can locate the pole 𝑘𝑝 in the lossy case, but not in the lossless case, which
is almost certainly due to the fact that the intrinsic square root function in
Matlab or any computer language always returns a value with a positive real
part, whereas ℜ𝑒 𝑘𝑧1 < 0 should be selected at the real pole in the lossless
case, according to (65). Hence, the Sommerfeld pole does not disappear
in the lossless limit, but becomes real-valued and inconsequential, being
squeezed between the two branch cuts in Fig. 14. The incorrect choice of the
square-root branch was also made in some false “proofs” that the Sommereld
pole did not exist [77, p. 431], [30, 78], and was probably responsible for
placing the pole on the wrong Riemann sheet in [79, p. 99]. (Incidentally,
a reprise of the Sommerfeld’s proof [5] of the existence of the pole on the
topmost Riemann sheet was recently given by Michalski and Mosig [54].)
Furthermore, the alleged dilemma “whether the reflection coefficient has a
zero or a pole” [73] does not in fact exist, since the reflection coefficient has
both poles and zeros, albeit on different Riemann sheets, as already discussed
above. Similarly, statements that “whether it will be a pole or a zero depends
on the value of the dielectric constant” or that “zero may become a pole” for
a complex dielectric constant [50] are questionable, since the value of the
dielectric constant only affects the location of a pole (or zero).

10Since the topic of the Zenneck wave—including its very existence and
physical reality—has been fraught with confusion, it is appropriate to un-
equivocally state here that the Sommerfeld pole does exist on the topmost
sheet of the Riemann surface with hyperbolic branch cuts, even in the lossless
case, and that Sommerfeld correctly included the Zenneck wave in his field
representation, which served as the point of departure for the subsequent
(unfortunately, flawed) asymptotic analysis [5]. However, the presence or
not of the Zenneck wave in the field complex depends in the particular field
representation, and there is no obligation from the mathematical point of view
to choose one formulation over another. For example, there is certainly no
Zenneck wave in the dipole field expressed as a Sommerfeld integral along
the real axis in the 𝑘𝜌−plane, and no Zenneck wave appears when this path is
deformed around vertical lines emanating downwards from the branch points,
rather than around the hyperbolic branch cuts [38]. Furthermore, there is no
Zenneck wave in the asymptotic field expression derived by the modified
saddle-point method, as explained in Appendix E. This apparent paradox is
easily explained: the appearance of a pole wave in the wave complex does
not a priori mean that this wave will dominate the behavior of the total field
of the dipole, and thus be physically meaningful. Although this does occur
in the case of surface plasmon polariton, which is also associated with the
Sommerfeld pole, except positioned differently with respect to the wavenum-
ber of the upper half-space, the same does not hold for the Zenneck wave,
which is asymptotically cancelled in the total field by the contribution from
a branch cut integral. Theoretically, the Zenneck wave may be enhanced
by an antenna or antenna array with a suitably tailored taper matching the
transverse field distribution of the Sommerfeld pole wave [80–83], [52, Ch. 7],
but the required aperture is too large to be realizable in practice, hence any
attempts to experimentally detect the Zenneck wave over a smooth ground
are doomed to fail. For this reason some authors call the Zenneck wave
non-physical, which—considering that a great deal of confusion has already
arisen regarding this wave—should probably be avoided, as this adjective can
be misconstrued to imply that the Zenneck wave is contrary to some laws
or fundamental postulates of physics. Indeed, there have been attempts to
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discredit the Zenneck wave on the physical basis, by claims that it violates
the radiation condition (which is irrelevant, since the radiation condition
holds for the total Maxwellian field and not necessarily for its constituents)
or that its group velocity exceeds the speed of light (which may well be true,
however its energy velocity always remains below this physical limit [84]).
There have been strenuous objections in the literature [50, 73] to calling the
“fast” Zenneck wave a surface wave, reserving this term exclusively for the
“slow” waves, such as a “trapped” mode guided by a dielectric slab. But,
”What’s in a name?” Note that the Zenneck wave propagates along the surface
and decays exponentially in the transverse direction at a rate significantly
greater than that in the radial direction, which are indisputably the necessary
attributes of a surface wave, and it seems unnecessary to additionally impose
the condition that the wave must be slow—a limitation which does not derive
from any boundary conditions [85]. Furthermore, both the Zenneck wave
and a trapped surface mode may be obtained as source-free solutions of the
Maxwell equations at the pole of the reflection coefficient looking into the
lower half-space, and thus both are pole waves and their fast or slow attribute
is solely determined by the pole location with respect to the wavenumber
of the external medium. Another argument used recently against calling the
Zenneck wave a surface wave is that, whereas the latter is generated by the
pole of the reflection coefficient Γ, the former supposedly arises from the zero
of Γ [73]. However, this is a false dichotomy, since the Zenneck pole wave
may also be synthesized by illuminating a lossy half-space with a plane wave
incident at the (complex) Brewster angle [86], [87, Sec. 2.5], [88]. We should
note here that the Sommerfeld pole, which gives rise to the Zenneck wave, is
weakly dependent on the frequency in the case of a low-loss lower half-space
medium, whereas the poles associated with trapped surface modes exhibit a
strong variation as the frequency is changed. This explains why an increase in
frequency has little effect on the transverse field distribution of the Zenneck
wave—which remains loosely bound to the surface—but it greatly affects
the transverse field of a trapped mode, which becomes more surface-bound
as the electrical thickness of the guiding layer increases. These differences
notwithstanding, whether the Zenneck wave is classified as a “true” surface
wave or not is in our opinion just a matter of semantics.

11Wait [89] has suggested that the trapped wave component, which has the
inverse-square-root range dependence, be called the Barlow surface wave,
to distinguish it from the Norton surface wave, where the trapped wave is
absent, and which has inverse-square range dependence, associated with the
lateral wave.

12In his seminal paper, Sommerfeld [5] considered the case of surface-
to-surface propagation and obtained an asymptotic solution, which unfortu-
nately had an elusive but consequential error [24]. Although Sommerfeld
later derived the correct expression using a different method [8, 58], a belated
discovery by Norton [90] of the discrepancy between his two solutions inexpli-
cably resulted in prolonged and recurring controversies in the literature, most
of which have already been adequately addressed by Baños [1, Sec. 4.10],
Wait [91], Collin [24], and Michalski and Mosig [54]. Incidentally, Collin [24]
appears to have unwittingly created another controversy when he stated in
his paper that the Sommerfeld sign error was “a myth.” By this seemingly
alarming announcement Collin meant that in his asymptotic solution Som-
merfeld did not in fact err in the choice of the sign of the complex square
root of the numerical distance parameter—as was the prevailing belief since
the paper by Niessen [92], but he did not imply that there was no error. Yet,
in the wake of Collin’s paper, statements have appeared in the literature that
“there was no error in Sommerfeld’s work” [50] or that “Sommerfeld had no
error in sign” [73]. In fact, there of course was an error in Sommerfeld’s
original paper, manifesting itself as a wrong sign in his asymptotic surface
field expression: if this sign were to be changed to the opposite, a correct
result would be obtained. Therefore, although Collin has shown that such
a “fix” could not be justified on mathematical grounds, one would not be
incorrect in saying that there was a sign error in Sommerfeld’s work—and,
paradoxically, in more than one sense. We are referring here to the seemingly
never mentioned misprint in one of the final formulas in the Sommerfeld’s
1909 paper, which mistakenly omitted the incorrect sign, thus making the
formula appear correct! This is possibly why Sommerfeld in his 1926 paper
could state that the (correct) surface field formula he obtained there agreed not
only with Weyl’s result, but also with his own expression derived previously.
Although in his “myth paper” Collin debunked the prevailing notion as to
the source of the error in Sommerfeld’s asymptotic solution, he was not able
to pinpoint the true source—nor was anyone else. (This is not meant as a

criticism, since finding a single source of the error may well be an impossible
task, in view of the numerous approximations made by Sommerfeld in his
derivation, usually invoking the high-contrast assumption.) Consequently,
although Collin’s discovery is an important contribution to the history of the
problem, the fact remains that the Sommerfeld’s original asymptotic formula
is incorrect and, furthermore, the correct asymptotic surface field expression
has been available since at least the second paper of Sommerfeld—and has
definitely been well known since the work of Norton.

13This report is no longer available in the US, but we have located a copy
at the National Diet Library, Kyoto, Japan. It is interesting that the sin2 𝜃2
denominator factor also appears in the numerical distance when the Norton
surface wave is derived using an integral equation approach [61, 93], but was
not included by Bannister [64], nor does it arise in the modified saddle-point
method formula (34).

14The surface plasmon polariton and the Zenneck wave are thus closely
related, as they represent two aspects of the same electromagnetic boundary-
value problem [94]. Both waves are associated with the Sommerfeld pole
on the top sheet of the Riemann surface and are classified as belonging to
one or the other surface wave species depending on the pole location with
respect to the wavenumber of the upper half-space—which in turn depends
on the sign of ℜ𝑒 𝜖 . Furthermore, it is possible for a “slow” surface plasmon
to evolve into a “fast” Zenneck wave, and vice versa, with a change in
frequency [42, 95, 96]. Yet, some authors [97] have mistakenly claimed that
the Sommerfeld pole “does not exist” and thus surface plasmons have “no
relation, whatsoever, with Sommerfeld surface waves!”

15The symbol Ω𝑁 in (84), where the subscript 𝑁 stands for Norton, is not
related to the symbols Ω1 and Ω2 used elsewhere in this paper.
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[6] J. Zenneck, “Über die Fortpflanzung ebener elektromag-
netischer Wellen längs einer ebener Leiterfläche und ihre
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